

Contents lists available at SciVerse ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Novel regulation of protein kinase C-η

Deepanwita Pal, Shalini Persaud Outram¹, Alakananda Basu*

Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA

ARTICLE INFO

Article history: Received 25 July 2012 Available online 7 August 2012

Keywords: PKCη PKCε Tumor promoter Upregulation Phosphorylation

ABSTRACT

Protein kinase C (PKC) is the receptor for tumor promoting phorbol esters, which are potent activators of conventional and novel PKCs, but persistent treatment with phorbol esters leads to downregulation of these PKCs. However, PKC η , a novel PKC isozyme, resists downregulation by tumor-promoting phorbol esters, but little is known about how PKC η level is regulated. Phosphorylation and dephosphorylation play an important role in regulating activity and stability of PKCs. In the present study, we have investigated the molecular mechanism of PKC η regulation. Several PKC activators, including phorbol 12,13-dibutyrate, 12-0-tetradecanoylphorbol-13-acetate and indolactam V caused upregulation of PKC η , whereas the general PKC inhibitor Gö 6983, but not the conventional PKC inhibitor Gö 6976 led to the downregulation of PKC η . Upregulation of PKC η was associated with an increase in phosphorylation of PKC η . Silencing of phosphoinositide-dependent kinase-1, which phosphorylates PKC η at the activation loop, failed to prevent PKC activator-induced upregulation of PKC η . Knockdown of PKC ϵ but not PKC ϵ inhibited PKC activator-induced upregulation of PKC η . Thus, our results suggest that the regulation of PKC η is unique and PKC ϵ is required for the PKC activator-induced upregulation of PKC η .

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Protein kinase C, a family of phospholipid-dependent serine/ threonine kinases, plays a critical role in signal transduction and cell regulation [1,2]. On the basis of their structural features, the PKC family is categorized into three groups, conventional (α , β I, β II and γ), novel (δ , ϵ , η , θ) and atypical (ζ , λ / ι). While conventional PKCs require Ca²⁺ and diacylglycerol (DAG) for their activities, novel PKCs are Ca²⁺-insensitive but DAG-dependent whereas atypical PKCs are insensitive to both Ca²⁺ and DAG [1]. PKC isozymes differ in biochemical properties, tissue-specific distribution and intracellular localization. Most cells express multiple PKC isozymes and they exhibit overlapping as well as distinct functions [3].

PKC serves as the receptor for tumor-promoting phorbol esters, which are potent activators of conventional and novel PKCs, and can substitute for the physiological activator DAG [3,4]. Sustained stimulation of PKCs by phorbol esters, such as TPA, has implicated the PKC isozymes in tumor promotion [2,5]. Prolonged treatment

with tumor-promoting phorbol esters eventually leads to the downregulation of the phorbol ester-sensitive PKCs [6]. Both activation and downregulation of PKCs have been implicated in regulating cellular functions.

PKCs are not only subject to regulation by cofactors, but also via phosphorylation [3]. PKCs are phosphorylated at the conserved residues in the activation loop, turn motif and hydrophobic motif. The phosphorylation of PKCs primes them for activation and regulates their stability and subcellular localization [3,5,7,8]. PKCs are regulated by both autophosphorylation [9] and transphosphorylation [10]. It is generally believed that the priming phosphorylation of PKC occurs at the activation loop by phosphoinositide-dependent kinase-1 (PDK1) and is followed by autophosphorylation at the turn and the hydrophobic motifs [6]. Recent studies, however, suggest that PKCs may also be transphosphorylated by other members of the PKC family [3,6,7,11]. For example, PKC δ has been shown to be transphosphorylated by PKC ϵ and *vice versa* [12]. This cross-regulation of PKCs may be an important way to integrate signals by various PKC isozymes.

PKC η is a member of the novel PKC isozymes that regulates cell proliferation, differentiation, secretion and apoptosis [13–17]. It is primarily expressed in epithelial cells and shares highest homology with PKC ϵ [18]. PKC η is upregulated in breast cancer tissues [19] and overexpression of PKC η has been associated with resistance to chemotherapeutic agents [17,20–24]. Although PKCs have been implicated in tumor promotion, PKC η is the only phorbol estersensitive PKC isozyme that resists downregulation upon prolonged

Abbreviations: DAG, diacylglycerol; ILV, indolactam V; PDBu, phorbol 12,13-dibutyrate; PDK1, phosphoinositide-dependent protein kinase-1; PKC, protein kinase C; aPKC, atypical PKC; cPKC, conventional PKC; nPKC, novel PKC; siRNA, short interfering RNA; TPA, 12-O-tetradecanoylphorbol 13-acetate.

^{*} Corresponding author. Fax: +1 817 735 2118.

E-mail address: Alakananda.Basu@unthsc.edu (A. Basu).

¹ Present address: Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.

treatment with phorbol esters [20,25,26]. Little is known about the unique regulation of PKC η . In the present study, we have investigated the mechanism by which PKC η level is regulated. Our results indicate that in contrast to conventional and novel PKCs, which undergo downregulation following persistent treatment with PKC activators, PKC η is upregulated in response to PKC activators and is downregulated upon treatment with PKC inhibitors. We demonstrate for the first time that the PKC activator-induced upregulation of PKC η is regulated by PKC ϵ , another member of the novel PKC family.

2. Materials and methods

2.1. Materials

PDBu and TPA were purchased from Alexis Biochemicals (San Diego, CA). ILV was obtained from LC Laboratories (Woburn, MA) and Sigma (St. Louis, MO). Gö 6983 and Gö 6976 were purchased from Calbiochem (San Diego, CA). Polyclonal antibodies to PKCn, PKCδ and PKCε were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Polyclonal antibody against PDK1 was purchased from Cell Signaling Technology, Inc. (Danvers, MA). Monoclonal antibody to PKC α was obtained from Upstate Biotechnology (Lake Placid, NY) and monoclonal antibody to PKC1 was from BD Transduction Laboratories (San Jose, CA). Monoclonal antibody against actin was obtained from Sigma (St. Louis, MO). Horseradish-peroxidase-conjugated donkey anti-rabbit and goat antimouse secondary antibodies were purchased from Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA). [32P]Orthophosphate was purchased from PerkinElmer, Inc. (Waltham, MA). Poly(vinylidenedifluoride) membrane was obtained from Millipore (Bedford, MA). Enhanced chemiluminescence detection kit was purchased from Amersham (Arlington Heights, IL).

2.2. Cell culture

Breast cancer cells were maintained in RPMI medium supplemented with 10% fetal bovine serum and 2 mM glutamine. Human embryonic kidney (HEK) 293T cells were maintained in Dulbecco's modified minimal essential medium supplemented with 10% fetal bovine serum and 2 mM glutamine. Cells were kept in a humidified incubator at 37 °C with 95% air and 5% CO₂.

2.3. Transfection

Control non-targeting siRNA or SMARTpool siRNA against PKC isozymes, and PDK1 were introduced into MCF-7 or T47D cells using Lipofectamine 2000 or Lipofectamine RNAiMax (Invitrogen, Carlsbad, CA) and manufacturer's protocol. Forty-eight hours following siRNA transfection, cells were treated as indicated in the text and processed for Western Blot analysis.

2.4. Reverse transcriptase PCR

MCF-7 cells were treated with or without PDBu, ILV or Gö 6983 for 16 h. Total RNA was extracted using TRI Reagent from Molecular Research Center, Inc. (Cincinnati, OH). cDNA was synthesized using random primers and Improm II reverse transcriptase from Promega (Madison, WI). PCR amplification of cDNA was performed using Promega PCR Master Mix (Madison, WI), PKCη and β-actin primers. The sequences of forward and reverse PKCη primers were 5′-ATGCGGTGGAACTTGCCA-3′ and 5′-CGTGACCACAGAGCATCT-CATAGA-3′, respectively. The sequences of the forward and reverse β-actin primers were 5′-ACCCAGCACAATGAAGATCA-3′ and 5′-GCGCAAGTTAGGTTTTGTCA-3′. After PCR cycling, a 750 bp product

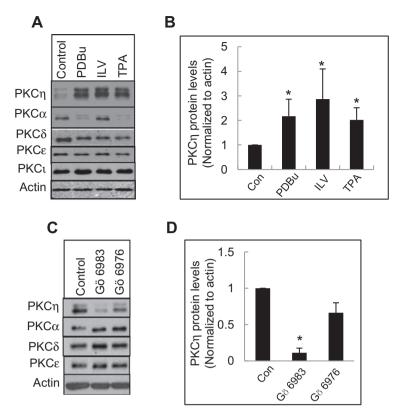
for PKC η and 800-bp product for β -actin was detected by gel electrophoresis.

2.5. Immunoblot analysis

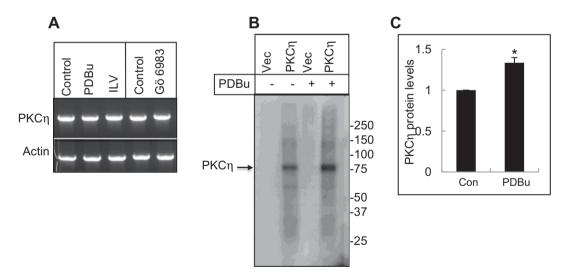
Cells were lysed in extraction buffer containing 1 mM DTT, protease inhibitors and phosphatase inhibitors. Equal amounts of protein were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred on PVDF membranes. Western Blot analysis was performed as described before [17].

2.6. Metabolic labeling

HEK293T cells were transiently transfected with either pcDNA3 or vector containing PKC η construct and radiolabeled with [32 P]orthophosphate. Cells were treated with or without PDBu and immunoprecipitated with either rabbit IgG or anti-PKC η antibody. Immunocomplexes were processed as described previously [27] and subjected to SDS-PAGE and autoradiography.


3. Results

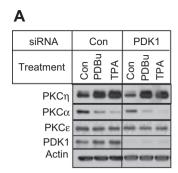
3.1. Effect of PKC activators and inhibitors on PKC η levels


We have previously demonstrated that persistent treatment with phorbol 12,13-dibutyrate (PDBu) caused upregulation of PKCn in MCF-7 breast cancer cells [20]. In the present study, we compared the effect of several structurally and functionally distinct PKC activators on PKCn level. While PDBu and TPA belong to the same class of compounds, indolactam V (ILV) is structurally distinct from phorbol esters. All three PKC activators caused substantial upregulation of PKCn (Fig. 1A and B). Based on the densitometric quantification of several independent experiments, PKC activators caused a significant increase in PKC\u03c4 level (Fig. 1B). PKC\u03c4 appeared as a doublet in the Western Blot since it contains two major transcription initiation sites [29]. Prolonged treatment with PDBu and TPA caused downregulation of conventional PKCa and novel PKC8 although PKCE was less susceptible to PKC activator-induced downregulation (Fig. 1A). The level of phorbol ester-insensitive atypical PKC1 remained unaltered, as expected (Fig. 1A). Consistent with our earlier reports, ILV had little effect on the downregulation of PKC α [28]. Thus, the regulation of PKC η is unique in comparison to other conventional and novel PKCs.

Since PKC activators led to PKC η upregulation, we examined whether PKC inhibitors would induce downregulation of PKC η . We compared the effects of the general PKC inhibitor Gö 6983 and conventional PKC inhibitor Gö 6976. Gö 6983 but not Gö 6976 caused substantial downregulation of PKC η (Fig. 1C and D). The levels of PKC- α , - δ and - ϵ were not decreased by Gö 6983 treatment (Fig. 1C). The general PKC inhibitor bisindolyl-maleimide also induced selective downregulation of PKC η (data not shown). Since atypical PKCs are phorbol ester-insensitive, these results suggest that the level of PKC η may be regulated by novel PKCs.

To determine if PKC activators and inhibitors alter PKCη expression at the mRNA level, we treated MCF-7 cells with PDBu, ILV or Gö 6983 and examined the mRNA expression by reverse-transcriptase PCR. As shown in Fig. 2A, the treatment of MCF-7 cells with PKC activators and inhibitors did not alter the mRNA expression of PKCη. Taken together, these results suggest that PKCη level is altered at the post-transcriptional level following treatment with PKC activators and inhibitors.

Fig. 1. Effects of PKC activators and inhibitors on PKCη level. MCF-7 cells were treated with 1 μ M PDBu, 10 μ M ILV and 100 nM TPA for 15 h. (A) Western Blot analysis was performed with total cell extract and probed with the indicated antibodies. Actin was used as a loading control. (B) Densitometric quantification of PKCη protein level from 3 separate experiments corrected for loading. Data represents the mean \pm s.e.m. The asterisk (*) indicates significant difference from control (P < 0.05) using paired Student's t-test. (C) MCF-7 cells were treated with 1 μ M Gö 6983 or 1 μ M Gö 6976 for 15 h. Total cell lysates were subjected to SDS-PAGE and Western Blot analysis was performed using the indicated antibodies. (D) Densitometric quantification of PKCη protein expression from 3 separate experiments corrected for loading. Data represents the mean \pm s.e.m. The asterisk (*) indicates significant difference from the control (P < 0.05) using paired Student's t-test.


Fig. 2. Effects of PKC modulators on PKCη mRNA expression and phosphorylation. (A) MCF-7 cells were treated with 1 μ M PDBu, 10 μ M ILV or 1 μ M Gö 6983 for 16 h. Total RNA was extracted and cDNA was synthesized by reverse transcriptase reaction. PKCη and β -actin cDNA were amplified by PCR and electrophoresed. Results are representative of at least 2 independent experiments. (B) HEK293T cells expressing empty vector or vector containing PKCη were radiolabeled with [32 P]orthophosphate and immunoprecipitated with PKCη following treatment with or without PDBu. The arrow indicates PKCη. (C) Densitometric quantification of PKCη protein level from 3 separate experiments corrected for loading. Data represents the mean \pm s.e.m. The asterisk (*) indicates significant increase with PDBu treatment (P < 0.05) using paired Student's t-test.

3.2. Effect of PKC activator and inhibitor on PKC η phosphorylation

Since persistent treatment with PKC activators cause activation of PKCs followed by dephosphorylation and downregulation of

PKCs, we examined if upregulation of PKC η by PKC activators was associated with an increase in PKC η phosphorylation. We introduced PKC η in HEK293T cells, labeled with [32 P]orthophosphate and immunoprecipitated PKC η following treatment with

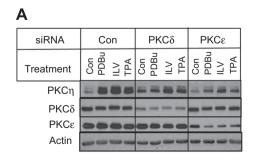
B

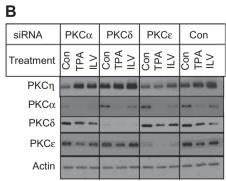
Treatment	_	βu			_	
1 '	ပိ	PDE	>	Con	PDBu	ILV
PKCη	-	-	-	person.	-	-
PKCα 📑	encor.	-	-			
Actin	_	_				

Fig. 3. Effect of PDK1 and PKC α knockdown on PKC η upregulation. (A) and (B) MCF-7 cells were transfected with the indicated siRNAs and then treated with or without 1 μM PDBu, 100 nM TPA or 10 μM ILV for 16 h. Western blot analysis was performed with indicated antibodies. Actin was used as a loading control. Results are representative of 3 independent experiments.

or without PDBu. We did not detect a phosphorylated band corresponding to PKC η in vector-transfected HEK293T cells (Fig. 2B). PKC η was constitutively phosphorylated in HEK293T cells expressing wild-type PKC η and PDBu further increased the level of phospho-PKC η (Fig. 2B). The densitometric scanning from three separate experiments indicated a significant increase in the phosphorylation status of PKC η in response to PDBu (Fig. 2C). These results suggest that upregulation of PKC η is associated with an increase in PKC η phosphorylation.

3.3. Regulation of PKCn level by transphosphorylation


PDK1 is believed to phosphorylate the activation loop of AGC kinases, including PKC isozymes [7,8]. Recent evidence has also implicated PDK1 in phosphorylating PKC η at the activation loop [30]. We therefore examined whether PDK1 was involved in the activator-induced upregulation of PKC η . Fig. 3A shows that the silencing of PDK1 by siRNA decreased the basal level of PKC η but had little effect on the upregulation of PKC η by phorbol esters.


Since cross-regulation of PKC isozymes by other PKC family members has been suggested by several studies [11,12,31], we examined if the knockdown of a particular PKC isozyme affects PKC η level. As shown in Fig. 3B, the depletion of conventional PKC α had little effect on phorbol ester-induced upregulation of PKC η . While knockdown of PKC δ had a modest effect, the knockdown of novel PKC ϵ substantially decreased the ability of PKC activators to enhance PKC η level in both MCF-7 (Fig. 4A) and T47D (Fig. 4B) cells. These results suggest that transphosphorylation of PKC η by novel PKC ϵ may be responsible for PKC η upregulation.

4. Discussion

The results of our present study demonstrate that the regulation of PKCη is unique compared to other PKC isozymes. Although tumor-promoting phorbol esters are potent activators of conventional and novel PKCs [4], persistent treatment with phorbol esters leads to the downregulation of phorbol ester-sensitive PKCs causing termination of PKC signaling [32]. Downregulation of PKCs has important implications in regulating long-term cellular responses, such as cell proliferation, differentiation and tumor promotion [2,13]. We have shown that in contrast to other PKCs, prolonged treatment with PKC activators led to upregulation of PKCη whereas PKC-specific inhibitors triggered downregulation of PKCη. Furthermore, we made a novel observation that novel PKCs are involved in PKC activator-induced upregulation of PKCη.

It is generally believed that treatment with PKC activators leads to membrane translocation of PKCs followed by dephosphorylation [33]. The dephosphorylated PKCs are subject to downregulation by proteases [34]. However, fully phosphorylated PKCα was shown to be downregulated at the plasma membrane via the proteasomemediated pathway [35]. In addition, the phosphorylated primed form of PKCε was downregulated by phorbol ester treatment independent of its intrinsic kinase activity [36]. It has been reported that active conformation of PKCn is necessary for its downregulation in baby hamster kidney (BHK) cells although TPA failed to downregulate PKCn in these cells [37]. Our results show that prolonged treatment with structurally distinct PKC activators, such as phorbol esters and ILV, caused an upregulation of PKCn in MCF-7 cells (Fig. 1A and B). The upregulation of PKCn by PKC activators was not unique to MCF-7 cells, and was observed in several cell types, including T47D, BT-20 and MCF-10CA1d cells (Fig. 4A and B and data not shown).

Fig. 4. Effects of novel PKC isozyme knockdown on PKC upregulation. MCF-7 (A) and T47D (B) cells were transfected with indicated siRNAs. Cells were treated with or without 1 μ M PDBu, 10 μ M ILV or 100 nM TPA for 16 h. Western blot analyses were performed using indicated antibodies. Results are representative of 3 independent experiments.

The activity, maturation, stability and localization of PKCs are regulated by phosphorylation and dephosphorylation events [7,8]. Our study suggests that PKC η level is regulated by phosphorylation. First, treatment with several PKC activators, such as TPA, PDBu and ILV induced upregulation of PKC η (Fig. 1A and B) but this upregulation was not associated with an increase in PKC η mRNA (Fig. 2A). Second, PKC-specific inhibitors Gö 6983 (Fig. 1C and D) and bisindolylmaleimide (data not shown) led to downregulation of PKC η . Third, upregulation of PKC η by PDBu was associated with an increase in PKC η phosphorylation (Fig. 2B and C).

Phosphorylation of PKCs is regulated by both autophosphorylation and transphosphorylation [3] and phosphorylation of PKCs at the activation loop is believed to prime them for activation [8]. Phosphoinositide-dependent kinase-1 (PDK1) has been shown to phosphorylate PKCs, at the activation loop and contributes to the stability of cPKCs and PKCε [32,33,38] PDK1 was also shown to phosphorylate PKCη at the activation loop [30]. However, knockdown of PDK1 did not prevent PKC activator-induced upregulation of PKCη (Fig. 3A).

PKCs can also undergo transphosphorylation by other members of the PKC family [3,12]. For example, PKC\$\text{c}\$ rather than PDK1 was shown to phosphorylate PKC\$\text{d}\$ and PKC\$\text{e}\$ at the activation loop whereas PKC\$\text{d}\$ induced autophosphorylation as well as transphosphorylation of PKC\$\text{e}\$ at the hydrophobic motif [12]. We recently reported that depletion of PKC\$\text{e}\$ enhanced PDBu-induced downregulation of PKC\$\text{d}\$ in HeLa cells [11]. Since the general PKC inhibitor G\text{o}\$ 6983 but not the conventional PKC inhibitor G\text{o}\$ 6976 induced PKC\$\text{n}\$ downregulation (Fig. 1C and D) and atypical PKCs are phorbol ester insensitive, it is likely that PKC\$\text{n}\$ is also regulated by novel PKC isozyme(s). Consistent with this notion, we found that depletion of cPKC\$\text{a}\$ had little effect on PKC activator-induced upregulation of PKC\$\text{n}\$ whereas knockdown of nPKC\$\text{e}\$ attenuated PKC\$\text{n}\$ upregulation (Fig. 4A and B).

The observation that PKC \u03c4 is the only PKC isozyme upregulated by tumor-promoting phorbol esters suggests that PKCn may play an important role in tumorigenesis. Depending on the cellular context, PKCn may suppress tumorigenesis or promote malignant cell growth. For example, PKCn knockout mice were more susceptible to tumor promotion in two-stage skin carcinogenesis model [39]. In contrast, PKCn has also been implicated in breast cancer [19,20], glioblastoma [21], Hodgkin's lymphoma [40], lung cancer [22,41] and hepatocellular carcinoma [42]. This contrasting function of PKCn in different cell types is not unique to PKCn and has been noted with other novel PKCs, such as PKCδ [5] and PKCε [43]. PKC\u03c3 is often overexpressed in breast cancer [19] and the level of PKCη is upregulated by estradiol in hormone-sensitive breast cancer cells [44]. Moreover, overexpression of PKCη confers resistance to chemotherapeutic drugs [17,20-24]. Thus, understanding the mechanism of PKC\u03c3 upregulation has significant implications in cancer therapy.

Acknowledgments

This work was supported by the grant CA071727 from the National Cancer Institute. The authors wish to thank Savitha Sridharan and Kirti Jain for critical reading of the manuscript.

References

- [1] Y. Nishizuka, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C, Science 258 (1992) 607–614.
- [2] E.M. Griner, M.G. Kazanietz, Protein kinase C and other diacylglycerol effectors in cancer, Nat. Rev. Cancer 7 (2007) 281–294.
- [3] S.F. Steinberg, Structural basis of protein kinase C isoform function, Physiol. Rev. 88 (2008) 1341–1378.
- [4] P.M. Blumberg, Protein kinase C as the receptor for the phorbol ester tumor promoters; sixth Rhoads memorial award lecture, Cancer Res. 48 (1988) 1-8.

- [5] A. Basu, D. Pal, Two faces of protein kinase Cdelta: the contrasting roles of PKCdelta in cell survival and cell death, Sci. World J. 10 (2010) 2272–2284.
- [6] C.M. Gould, A.C. Newton, The life and death of protein kinase C, Curr. Drug Targets 9 (2008) 614–625.
- [7] D.B. Parekh, W. Ziegler, P.J. Parker, Multiple pathways control protein kinase C phosphorylation, Embo J. 19 (2000) 496–503.
- [8] A.C. Newton, Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm, Biochem. J. 370 (2003) 361–371.
- [9] A.J. Flint, R.D. Paladini, D.E. Koshland Jr., Autophosphorylation of protein kinase C at three separated regions of its primary sequence, Science 249 (1990) 408– 411
- [10] E.M. Dutil, L.M. Keranen, A.A. DePaoli-Roach, A.C. Newton, In vivo regulation of protein kinase C by trans-phosphorylation followed by autophosphorylation, J. Biol. Chem. 269 (1994) 29359–29362.
- [11] A. Basu, S. Sridharan, S. Persaud, Regulation of protein kinase C delta downregulation by protein kinase C epsilon and mammalian target of rapamycin complex 2, Cell Signal. 21 (2009) 1680–1685.
- [12] V.O. Rybin, A. Sabri, J. Short, J.C. Braz, J.D. Molkentin, S.F. Steinberg, Cross-regulation of novel protein kinase C (PKC) isoform function in cardiomyocytes. Role of PKC epsilon in activation loop phosphorylations and PKC delta in hydrophobic motif phosphorylations, J. Biol. Chem. 278 (2003) 14555–14564.
- [13] A. Basu, The potential of protein kinase C as a target for anticancer treatment, Pharmacol. Ther. 59 (1993) 257–280.
- [14] M. Kashiwagi, M. Ohba, K. Chida, T. Kuroki, Protein kinase C eta (PKC eta): its involvement in keratinocyte differentiation, J. Biochem. 132 (2002) 853–857.
- [15] E. Fima, M. Shtutman, P. Libros, A. Missel, G. Shahaf, G. Kahana, E. Livneh, PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells, Oncogene 20 (2001) 6794–6804.
- [16] I.M. Hussaini, L.R. Karns, G. Vinton, J.E. Carpenter, G.T. Redpath, J.J. Sando, S.R. VandenBerg, Phorbol 12-myristate 13-acetate induces protein kinase ceta-specific proliferative response in astrocytic tumor cells, J. Biol. Chem. 275 (2000) 22348–22354.
- [17] G.R. Akkaraju, A. Basu, Overexpression of protein kinase C-eta attenuates caspase activation and tumor necrosis factor-alpha-induced cell death, Biochem. Biophys. Res. Commun. 279 (2000) 103–107.
- [18] Y. Hashimoto, S. Osada, S. Ohno, T. Kuroki, A Ca(2+)-independent protein kinase C, nPKC eta: its structure, distribution and possible function, Tohoku J. Exp. Med. 168 (1992) 275–278.
- [19] P.A. Masso-Welch, J.S. Winston, S. Edge, K.M. Darcy, H. Asch, M.M. Vaughan, M.M. Ip, Altered expression and localization of PKC eta in human breast tumors, Breast Cancer Res. Treat. 68 (2001) 211–223.
- [20] A. Basu, The involvement of novel protein kinase C isozymes in influencing sensitivity of breast cancer MCF-7 cells to tumor necrosis factor-alpha, Mol. Pharmacol. 53 (1998) 105–111.
- [21] I.M. Hussaini, J.E. Carpenter, G.T. Redpath, J.J. Sando, M.E. Shaffrey, S.R. Vandenberg, Protein kinase C-eta regulates resistance to UV- and gamma-irradiation-induced apoptosis in glioblastoma cells by preventing caspase-9 activation, Neuro Oncol. 4 (2002) 9–21.
- [22] J. Sonnemann, V. Gekeler, K. Ahlbrecht, K. Brischwein, C. Liu, P. Bader, C. Muller, D. Niethammer, J.F. Beck, Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel, Cancer Lett. 209 (2004) 177–185.
- [23] H. Raveh-Amit, N. Hai, N. Rotem-Dai, G. Shahaf, J. Gopas, E. Livneh, Protein kinase Ceta activates NF-kappaB in response to camptothecin-induced DNA damage, Biochem. Biophys. Res. Commun. 412 (2011) 313–317.
- [24] J. Sonnemann, V. Gekeler, A. Sagrauske, C. Muller, H.P. Hofmann, J.F. Beck, Down-regulation of protein kinase Ceta potentiates the cytotoxic effects of exogenous tumor necrosis factor-related apoptosis-inducing ligand in PC-3 prostate cancer cells, Mol. Cancer Ther. 3 (2004) 773–781.
- [25] C.C. Chen, J.K. Wang, W.C. Chen, TPA induces translocation but not down-regulation of new PKC isoform eta in macrophages, MDCK cells and astrocytes, FEBS Lett. 412 (1997) 30–34.
- [26] M.S. Resnick, X. Luo, E.G. Vinton, J.J. Sando, Selective up-regulation of protein kinase C eta in phorbol ester-sensitive versus -resistant EL4 mouse thymoma cells, Cancer Res. 57 (1997) 2209–2215.
- [27] D. Lu, J. Huang, A. Basu, Protein kinase Cepsilon activates protein kinase B/Akt via DNA-PK to protect against tumor necrosis factor-alpha-induced cell death, J. Biol. Chem. 281 (2006) 22799–22807.
- [28] A. Basu, A.P. Kozikowski, J.S. Lazo, Structural requirements of lyngbyatoxin A for activation and downregulation of protein kinase C, Biochemistry 31 (1992) 3824–3830.
- [29] N. Bacher, Y. Zisman, E. Berent, E. Livneh, Isolation and characterization of PKC-L, a new member of the protein kinase C-related gene family specifically expressed in lung, skin, and heart, Mol. Cell. Biol. 11 (1991) 126–133.
- [30] S. Lachmann, S. Bar, J. Rommelaere, J.P. Nuesch, Parvovirus interference with intracellular signalling: mechanism of PKCeta activation in MVM-infected A9 fibroblasts, Cell Microbiol. 10 (2008) 755–769.
- [31] W.H. Ziegler, D.B. Parekh, J.A. Le Good, R.D. Whelan, J.J. Kelly, M. Frech, B.A. Hemmings, P.J. Parker, Rapamycin-sensitive phosphorylation of PKC on a carboxy-terminal site by an atypical PKC complex, Curr. Biol. 9 (1999) 522– 520
- [32] G. Hansra, P. Garcia-Paramio, C. Prevostel, R.D. Whelan, F. Bornancin, P.J. Parker, Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes, Biochem. J. 342 (Pt 2) (1999) 337–344.

- [33] H.W. Lee, L. Smith, G.R. Pettit, J.B. Smith, Bryostatin 1 and phorbol ester down-modulate protein kinase C-alpha and -epsilon via the ubiquitin/proteasome pathway in human fibroblasts, Mol. Pharmacol. 51 (1997) 439–447.
- [34] C. Prevostel, V. Alice, D. Joubert, P.J. Parker, Protein kinase C(alpha) actively downregulates through caveolae-dependent traffic to an endosomal compartment, J. Cell Sci. 113 (Pt 14) (2000) 2575–2584.
- [35] O.V. Leontieva, J.D. Black, Identification of two distinct pathways of protein kinase Calpha down-regulation in intestinal epithelial cells, J. Biol. Chem. 279 (2004) 5788–5801.
- [36] A.J. Cameron, C. Escribano, A.T. Saurin, B. Kostelecky, P.J. Parker, PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity, Nat. Struct. Mol. Biol. 16 (2009) 624–630.
- [37] B.S. Kang, O.G. French, J.J. Sando, C.S. Hahn, Activation-dependent degradation of protein kinase C eta, Oncogene 19 (2000) 4263–4272.
- [38] A. Balendran, G.R. Hare, A. Kieloch, M.R. Williams, D.R. Alessi, Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms, FEBS Lett. 484 (2000) 217–223.

- [39] K. Chida, T. Hara, T. Hirai, C. Konishi, K. Nakamura, K. Nakao, A. Aiba, M. Katsuki, T. Kuroki, Disruption of protein kinase Ceta results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis, Cancer Res. 63 (2003) 2404–2408.
- [40] S. Abu-Ghanem, G. Oberkovitz, D. Benharroch, J. Gopas, E. Livneh, PKCeta expression contributes to the resistance of Hodgkin's lymphoma cell lines to apoptosis, Cancer Biol. Ther. 6 (2007) 1375–1380.
- [41] E. Krasnitsky, Y. Baumfeld, J. Freedman, N. Sion-Vardy, S. Ariad, V. Novack, E. Livneh, PKCeta is a novel prognostic marker in non-small cell lung cancer, Anticancer Res. 32 (2012) 1507–1513.
- [42] H.C. Lu, F.P. Chou, K.T. Yeh, Y.S. Chang, N.C. Hsu, J.G. Chang, Analysing the expression of protein kinase C eta in human hepatocellular carcinoma, Pathology 41 (2009) 626–629.
- [43] A. Basu, U. Sivaprasad, Protein kinase Cepsilon makes the life and death decision, Cell Signal. 19 (2007) 1633–1642.
- [44] G. Karp, A. Maissel, E. Livneh, Hormonal regulation of PKC: estrogen upregulates PKCeta expression in estrogen-responsive breast cancer cells, Cancer Lett. 246 (2007) 173–181.